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ABSTRACT
There is an increased use of Internet-of-Things and wearable
sensing devices in the urban marathon to ensure an effective
response to unforeseen medical needs. However, the massive
amount of real-time, heterogeneous movement and psycho-
logical data of runners impose great challenges on prompt
medical incident analysis and intervention. Conventional ap-
proaches compile such data into one dashboard visualization
to facilitate rapid data absorption but fail to support joint
decision-making and operations in medical encounters. In
this paper, we present MaraVis, a real-time urban marathon
visualization and coordinated intervention system. It first vi-
sually summarizes real-time marathon data to facilitate the
detection and exploration of possible anomalous events. Then,
it calculates an optimal camera route with an arrangement of
shots to guide offline effort to catch these events in time with
a smooth view transition. We conduct a within-subjects study
with two baseline systems to assess the efficacy of MaraVis.
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Anomaly detection; Marathon visualization; Shot chaining;

CCS Concepts
•Human-centered computing → Visualization; Human
computer interaction (HCI);

INTRODUCTION
There is an increasing trend of using real-time Internet-
of-Things and wearable devices such as smartwatches and
bracelets for medical incident response in urban marathon [7,
19, 36]. Event managers and authorized healthcare personnel
have to interpret a large amount of respective information and
make swift and informed decisions in a short period of time
in case of emergency [15]. There is thus a pressing need for a
good visualization system that can provide effective represen-
tation of multivariate, time-varying data streams from different
sources, as well as facilitating coordination of efforts among
online and offline participating agencies, security teams, and
medical services.
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Conventionally, dashboard systems are used to compile het-
erogeneous data into one visualization to assist in rapid
data absorption [4]. Although such systems have demon-
strated promising performance in emergency relief in previous
marathon events [4, 5, 11, 15, 31], they still face several chal-
lenges in supporting joint decision-making and operations in
medical encounters. (1) Distillation of massive, real-time
information. Traditional dashboard system tries to integrate
all sorts of incoming data into one screen for providing a
centralized source of information for marathon organizers to
maintain real-time situational awareness of all aspects of the
event, from weather to runner count [4, 15]. However, due to
the constraints in screen space, only a small part of the data
gets visualized to users in reality. Failing to make sense of
the limited information made available in face of critical med-
ical incidents may cause delay in response, event jeopardizing
runner’s health in worst-case scenarios. Hence, an effective
visualization system should have the ability to distill vast data
down to their essence, compressing meanings into more con-
cise information units that can be updated seamlessly [4, 15].
(2) Representation of runner information and detection of
anomalies. Existing dashboard systems often aggregate all
types of data collected from runners such as speed, location,
and heart rate into a simple summary view. It is difficult, even
for an experienced medical staff, to identify outliers presented
in such a form. It is thus necessary to preserve temporal and
spatial dynamics as well as correlations across different at-
tributes in runner data to detect anomalous events on the spot
or in advance. (3) Coordination of intervention. Dashboard
systems usually show each type of data in a designated area
and require manual interactions to further inspect information
on certain part of the display. According to our collaboration
experts, if they notice something suspicious in the data view,
they need to manipulate the control panel on a phone or tablet
to zoom in to the related area on the big screen for other per-
sonnel to take a closer look. If further investigation at the
scene is necessary, they need to contact and verbally direct
operators of street cameras or pilots of drones to locate the
incident and stream live video on the spot [4]. All of these are
very labor-intensive. It would save considerable coordination
efforts beforehand by streamlining the actions with different
data views online and planning the camera path offline.

In this paper, we introduce MaraVis, a real-time urban
marathon visualization system that supports better represen-
tation and coordinated intervention of medical encounters,
optimizing the usage of massive marathon data streams. To

CHI 2020 Paper  CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 154 Page 1

https://doi.org/10.1145/3313831.3376281


address challenge (1) and (2), the system provides an informa-
tive visual synopsis of real-time, respective marathon data and
facilitates detailed exploration of possible anomalous events
that are automatically identified. More specifically, we apply
anomaly detection based on both the dynamics and correlation
of event participants’ attributes to generate a series of potential
anomalous events. To address challenge (3), the system com-
putes an optimal camera route to inspect these anomalies at the
scene to support decision-making. We adapt techniques from
dynamic programming and filmmaking to locate places along
the route that shots with the maximum amount of unique and
essential information about the event of interest can be taken.
We organize these shots into an animation and compile the
associated camera views to further guide the offline image cap-
turing devices. This can minimize the communication costs
among all the parties involved. The primary contributions of
our work are summarized as follows:

• We extract the attribute dynamics and correlation of the
heterogeneous marathon data in real-time to identify poten-
tial anomalous events, allowing event organizers to quickly
follow up with critical medical incidents.
• We adapt techniques from dynamic programming and film-

making to arrange the best camera views for delivering the
essence of marathon events, which can enable online inspec-
tors to guide offline devices to capture real-world images
promptly for decision-making.
• We conduct a within-subjects study to evaluate the perfor-

mance of MaraVis. Feedback from the users indicates the
superiority of MaraVis over the baseline systems.

RELATED WORK

Anomaly Detection and Visualization
Anomaly detection has been extensively studied over the years,
including classification-based algorithms in terms of super-
vised [18, 30, 46], semi-supervised [10, 28], statistics-based
algorithms [3, 49], distance-based algorithms [6, 9, 17], and
spectral-based algorithms [41]. For example, Donoghue et
al. [34] provided a multi-step anomaly detection process which
utilizes different combinations of algorithms to identify out-
liers and events for unsupervised athlete performance data.
Although they are helpful to deal with most applications,
they have a limited capability in examining the real-time data
streaming collected by wearable sensor devices. In this pa-
per, we first leverage the real-time streaming data and then
adapt a distance-based algorithm to determine the potential
outliers. Visualization techniques have been applied to support
anomaly detection and facilitate decision-making [20, 22, 25,
48]. Dimensionality reduction techniques are also applied to
understand how data distribute in a multi-dimensional space,
such as MDS [21], PCA [41] and t-SNE [29]. In this paper, we
augment well-established visualizations to identify anomalies
by inspecting different metrics and their correlation.

Marathon Visualization and Intervention
Reviewing a marathon event mainly involves watching televi-
sion [1], filming and uploading amateur footage of marathon
events [14], and visualizing running trajectories. Recently,
organizers track athlete in real-time through radio-frequency

chips. However, the existing race-management systems that
utilize these data have been far from fully successful in visual-
izing a marathon event. Basdere et al. [4, 5] proposed a data
visualization system SAFE, i.e., Situational Awareness For
Events, for massive participation endurance events. It incorpo-
rates critical data into a dashboard and provides pre-event and
on-site analytics to help race organizers effectively manage
and oversee all event participants, monitor the dynamic loca-
tions of race participants, as well as manage health and safety
resources. Our work is similar to SAFE, however, we focus on
distilling potential anomalies by analyzing attribute dynamics
and correlation. Meanwhile, we design an optimal camera
view sequence and shot types to improve online observation
experience and facilitate offline intervention of anomalies.

Scene Navigation and Camera Control
Scene navigation generates a guided tour in a 3D space gener-
ally constrained by a set of given landmarks [47]. Vázquez et
al. [43] leveraged viewpoint entropy to quantify the amount
of information that a viewpoint conveys about a specific 3D
scenario. Sokolov et al. [42] generated a path that interpolates
viewpoints by solving a Travel Salesmen Problem (TSP), in
which the cities to traverse are the viewpoints and the cost is a
combination of the Euclidean distance between the viewpoints
and the visual quality along the path. Serin et al. [40] consid-
ered a semantic distance metric between good views, of which
the goal is to avoid transitions between unrelated landmarks.
Xie et al. [47] generated a large collection of suitable camera
moves around landmarks and designed a global path which
selects the best camera move for each landmark and connects
them together. While we also use TSP to construct an optimal
camera path, we take both the spatial and temporal factors
into account to find the optimal schedule of camera views that
catches events promptly and makes smooth view transitions.

Camera control in a 3D space is specified by tasks and has
been addressed by many techniques [26, 27]. Blinn [8] com-
puted viewpoints to calculate camera position and orientation
by specifying on-screen properties. Visual properties in the
image space have also been translated into constraints and
applied on the camera freedom and solved through optimiza-
tion techniques [2, 38]. However, most of them focus on the
viewpoint positions, light source and moving paths. Wang et
al. [44] borrowed time remapping and foreshadowing from
cinematography to generate animations. Similarly, we intro-
duce shot designs such as panorama shot and dolly shot that
are commonly used in film directing to control camera views
and deliver different events along the camera route.

BACKGROUND AND OBSERVATIONAL STUDY

Marathons and Marathon Planning
A marathon is a long-distance running event covering an offi-
cial distance of 26.22 miles. Given the scale of participants,
preparing a marathon event requires significant efforts, in-
cluding the design and implementation of (1) racing course,
(2) communication systems, (3) resource management [4].
Specifically, situational awareness has proven to be critical
at a range of events from course rerouting (e.g., a gas leak
in London Marathon 2008) to tragic medical incident (e.g., a
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car accident in Klang City Marathon) [5]. During a marathon,
participants may encounter medical incidents such as falling
down, arrhythmia, and heatstroke, as well as other unforeseen
incidents like lagging too far behind, or running off the racing
course. In case of such race disruption events, runners could
receive help from the aid stations distributed along the rac-
ing course, which are equipped with emergency supplies and
connected to the command center through radio operators via
intercoms and phones. It is thus critical for organizers to track
runners’ progression at all times to ensure timely responses.

About the Marathon Organizing Team and Penrose
To better understand existing practice of anomaly detection
and intervention in marathon, we worked with a team of ex-
perts, including a chief director (E.1) from a local sports bu-
reau, a chief designer (E.2) and a data director (E.3) from an
Internet company, a smartwatch supplier (E.4), and a manager
of the medical group (E.5). They jointly launched a dashboard
visualization system Penrose (Figure 1) on April 21st , 2018 for
the city annual marathon event. Penrose shows the geograph-
ical distribution of runners, security personnel, medical and
rescue team on a large screen to assist organizers in achieving
intelligent management, i.e., it visualizes spatial-temporal dis-
tributions of participants as dots and crowd density as a heat
map based on data captured by smartwatches on all runners to
track their locations and heart rate. Other information such as
ambulance vehicles’ locations are also displayed on the screen.
When organizers observe race disruption events in Penrose,
they take immediate actions to deal with the emergencies.

Figure 1: Penrose consists of (1) a dashboard and (2) a map.

Bottlenecks and Expectations
The deployment of Penrose at the local marathon event offers
us an opportunity to observe the usage of the system, collect
experts’ feedback on user experiences, and identify key prin-
ciples of a successful visualization system for such a context.
Although Penrose can display essential data streams in real-
time, it has several limitations in terms of limited distillation of
marathon information, detection and representation of anoma-
lies, as well as manually coordinated intervention of medical
encounters. We interviewed E.1-5 in separate sessions to iden-
tify their primary concerns about marathon visualization and
the potential obstacles in decision-making and coordination.
The need for a real-time visualization system that can support
intuitive representation and efficient coordinated intervention
of medical encounters in marathon emerged as the key theme
of the interview results. Despite individual differences in
their expectations of such a system, certain requirements were
expressed across the board.

R.1 Correlating Various Sources of Marathon Informa-
tion. According to E.1-3, one pressing issue of Penrose is its
way of representing event participants as separate dots. Given
that the marathon data streams are heterogeneous in nature, dis-
playing different types of data separately without considering
the spatial-temporal correlation among them would hinder the
observation of the whole story of the marathon event. There-
fore, our experts were interested in having a well-organized
representation of the key marathon information extracted from
different sources of real-time data streams.

R.2 Incorporating More Data for Anomaly Detection. Ac-
cording to E.4-5, Penrose only exploits heart rate, speed, and
body motion scale collected from smartwatches to determine
whether a medical incident occurs, which could miss many
potential anomalies. Medical staff in the command center
found it rather difficult to judge the occurrence of possible
medical incidents and their severity from such limited infor-
mation. Therefore, they wanted to know whether more infor-
mation could be leveraged to identify factors that may disrupt
a runner’s progress. For example, E.5 expressed a desire to
employ raw data such as photoplethysmography (PPG) signals
to jointly determine whether an anomaly occurs.

R.3 Revealing Data Dynamics and Contexts. All experts
showed an interest in learning more about the contexts and dy-
namics of the anomalies for better sense-making. For example,
some incidents may occur suddenly with no warning signs,
e.g., falling down, while others happen some time after the
initial symptoms show up, e.g., heatstroke. Also, falling down
may be caused by congestion, flawed route design, or psycho-
logical status of the participant, which may result from a pre-
vious incident as well. Penrose currently displays anomalies
in a separate list without considering the relation to the racing
environment. As reported by E.5, it was thus difficult to infer
the contextual information of each detected event and keep
track of all runners involved in these incidents. Understanding
spatiotemporal dynamics and correlations across different data
attributes would help identify key marathon events on the spot
or in advance and remove potential data bias in this process.

R.4 Demanding Effortless Interaction. During the inter-
view, E.2 mentioned that when using Penrose to review the
marathon progress or observe different areas of the racecourse,
he had to manually navigate to the corresponding area on
the screen through a tablet. Thus, he hoped to have more
convenient interactions with the system.

R.5 Linking Online and Offline Intervention. Upon the de-
tection of a potential medical anomalous event in Penrose, E.1
and E.5 had to manually dispatch this message to the near-
est ambulances and security personnel for offline emergency
relief, while invoking the closest cameras installed along the
course or drones to capture scene images for further inspec-
tion and diagnosis. The entire process was not effective and
efficient due to two reasons. First, E.1 mentioned that offline
operators need to “manually translate high-level information
from him to low-level device control”, with a lot of information
to clarity. Second, controlling and scheduling offline camera
moves to catch anomalous events in time is quite challenging
since multiple detected anomalous events may occur at the
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same time so that one must simultaneously take the attributes
of the detected events into consideration, i.e., event locations
and occurrence time. Our experts also reported that due to the
labor-intensive and time-consuming communication between
online command center and offline resources (one director and
two medical staffs for each reported anomalous event), they
only continuously monitored athletes with particularly serious
injuries and did no keep tracking other athletes with minor in-
juries after treatment. Therefore, they were envisioning a more
automatic way of coordinating online and offline intervention.

Figure 2: MaraVis system architecture and pipeline.

OVERVIEW OF MARAVIS
Based on the above requirements, we propose MaraVis, a
real-time visualization system that supports better representa-
tion and coordinated intervention of medical encounters in the
massive urban marathon data streams. Figure 2 illustrates the
system architecture and interaction pipeline, which consists of
the back-end engine and the front-end visualization. Particu-
larly, the back-end engine comprises the data processing, the
anomaly detection, and the camera control modules.

BACK-END ENGINE

Data Description and Processing
The first deployment of Penrose provides us with a dataset
that records a local 2-hour 20km half-marathon event, which
involves 800 staff and participants with 200 runners finishing
the race and 20 service stations. We process the data in three
aspects. (1) Urban Environment. The urban environment
is simulated in a 2.5D map, which displays major roads and
buildings. Along the racing course, several types of marathon
facilities are set up for emergency relief, including service
and aid stations. Each station has its own id and contact infor-
mation and is displayed on the map. (2) Event Participants.
The marathon runners, volunteers and event organizers are all
defined as event participants. In this paper, the information
of a total of 800 event participants is collected via wearable
smartwatches. The dynamic movements of these participants,
especially the runners are used to construct the running tra-
jectories. Each trajectory includes a timestamp, heart rate,
peak-to-peak interval (PPI) derived from PPG data, speed,
pace, cadence, distance, longitude, latitude, and id. Since
we are targeting a real-time marathon scenario, we replay the
data streams based on their timestamps to simulate that the
data is fetched in real-time when designing and implementing
MaraVis. (3) Real-time Clustering. The purpose of real-time
clustering is to identify the clustering center of the crowded
runners. To be specific, for each timestamp t, we take the spa-
tial positions of all runners as input and apply a density-based
clustering algorithm called Mean Shift [12] to cluster these
runners. In this way, we can obtain the clustering result for
every timestamp for later use in the camera control module.

Anomaly Detection
The anomaly detection module of MaraVis consists of three
parts: real-time anomaly detection, stage anomaly detection,
and Heart Rate Variability (HRV) inspection of anomalies.

Real-time Anomaly Detection tracks runners’ attributes in
every 5 seconds and evaluates whether the value of any at-
tributes is outside the normal range, which is determined after
discussing with the medical group.

Stage Anomaly Detection is a complement of the real-time
anomaly detection, since E.5 reports that “some anomalies
may occur after the initial symptoms show up”. That is, the
attributes of runners should also be considered collectively
within a certain time period. After discussing with E.5, we set
the length of the time window as 2 minutes, which can be eas-
ily adjusted according to the practical situation. Particularly,
stage anomaly detection determines potential anomalies based
on the accumulated data within a predefined time window in
the following four steps:

Step 1: Attribute Normalization and Averaging. We normal-
ize all runners’ attributes (i.e., heart rate, PPI, speed, pace,
cadence, distance) in every 5 seconds and average the corre-
sponding attributes. Therefore, we can attain the correspond-
ing feature signature vector for each runner by using the mean
of each normalized attribute within 2-minute period.

Step 2: Distance Matrix Construction. We compute pairwise
similarity between runners by using Canberra Distance [24]:
dCan(P,Q) = ∑

n
n
|Pi−Qi|
(Pi+Qi)

, where P and Q represent the feature
signature vectors of two runners. We choose Canberra Dis-
tance because it is sensitive to small changes and normalizes
the absolute difference of individual comparisons, benefiting
to the detection of clusters and outliers [23]. Therefore, an
entire distance matrix can be obtained for the following di-
mensionality reduction analysis.

Step 3: Dimensionality Reduction. We generate a 2D embed-
ding of runners’ attributes using t-SNE based on the attained
distance matrix. We select t-SNE as the dimensionality reduc-
tion technique because it shows superiority in generating 2D
projection that “can reveal meaningful insights about data, e.g.,
clusters and outliers”. It is more visually interpretable than
naïve eigen-analysis, and depending on the distribution, more
intuitive than MDS results, which preserve global structure
more at the expense of local structure retained by t-SNE [23].

Step 4: Outlier Detection. For all runners’ records within each
time period, we apply an outlier detection algorithm, i.e., Lo-
cal Outlier Factor (LOF) [9] to find isolated data points, which
is one of the most widely-used outlier detection algorithms.
LOF compares the k-neighborhood density of an instance a
to the k-neighborhood density of a’s k-neighbors and deter-
mines whether a is an outlier, which is formally defined as:

LOFk(a) =
∑b∈NNk(a)

lrdk(b)
lrdk(a)

k and lrdk(a) is a’s local reachability

density, which is defined as: lrdk(t) = (
∑s∈NNt (k) distk(t,s)

k )−1,
where distk(a,b) = max(dk(b),d(a,b)) indicates the reacha-
bility distance between a and b, i.e., the Euclidean distance
between a and b but no smaller than b’s k-distance (dk(b)).
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The parameter k can be arbitrarily determined based on users’
experience regarding a given dataset [48]. Outliers with the
LOF score larger than 1 indicate an isolated instance.

HRV Inspection of Anomalies facilitates medical groups to
leverage more information to analyze the previously detected
outlier runners. We derive multiple HRV metrics from the orig-
inal PPG signals collected from the wearable smartwatches,
including time-domain, frequency-domain and geometric met-
rics [37, 39]. These metrics are summarized as diagnostic
charts for further medical inspection. Furthermore, MaraVis
implements a deep learning model to detect Atrial Fibrillation
(AF) beats in HR signals [13]. The model utilizes a Long-
Short Term Memory (LSTM) model to capture the time-series
features of PPI signal and is trained offline using a widely-used
public dataset, MIT-BIT Atrial Fibrillation Database [32, 35]
(accuracy of 99.77% with blindfold validation).

Camera Control
Having determined a set of events, our next task is to compute
an optimal sequence for the entire flyby by chaining each
event in alternating order, to maximize the total quality (i.e.,
minimize the time) of the resulting trajectory.

Camera Move Chaining. We propose a method to sequence
camera views to present the detected events during a marathon
match, which has two aspects. First, we need to schedule
the camera moves to catch those anomalous events in time
and make view transition as smooth as possible. Second, the
visualization should provide a guideline for invoking offline
camera devices. We assume that multiple video sources have
been set up and our camera views can be attained directly so
we do not need to consider practical constraints such as aerial
vehicle navigation or camera location. With this assumption,
we formulate this problem in a solvable manner. Xie et al. [47]
proposed a technique for creating and chaining camera moves
and solved it as a Travel Salesman Problem (TSP). Similarly,
we also need to plan the route and view transitions. However,
different from their task, we do not necessarily need a complex
evaluation function, whereas we should consider the temporal
factors since we focus on real-time anomaly detection.

We formulate this problem as a combinatorial optimization
problem to find a camera view sequence with minimal cost,
which corresponds to a camera move with the highest quality.
Particularly, given a set of data points with 2D coordinates
and 1D timestamp, we construct a coordinate system in a 3D
space by selecting the data point with the earliest timestamp
as the origin, and taking the relative distances of all the other
data points to the origin as their coordinates. Therefore, each
data point can be represented as (x,y, t). Furthermore, we
integrate the spatiotemporal dimension by introducing a speed
assumption that comes from a real camera move, i.e., the
speed of a flying drone or sliding rail. With this assumption,
we unify the measuring approach and generalize mathematical
formulations for our task of deciding which point to be visited
next, which can be formally defined in the following two ways
(Figure 3): (1) Algorithm 1. We formulate this problem as
a 3D routing problem by leveraging a 3D Euclidean distance
ϕ = ∆x2 +∆y2 +∆t2 as the measure, i.e., a 3D version of TSP
with the constraint of ∑ϕi = (x0− xn)

2 +(y0− yn)
2 +(t0−

tn)2 +∑
n
i=1((xi− xi−1)

2 +(yi− yi−1)
2 +(ti− ti−1)

2). (2) Al-
gorithm 2. Since our goal is to capture anomalous events in a
timely and smooth manner, the problem can be also formulated
as “always move to the event that we can arrive on time”. This
is equivalent to minimize the cumulative gap between spatial
and temporal distance, which is essentially a combinatorial op-
timization problem with the measure of ϕ = ∆x2 +∆y2−∆t2

and the constraint of ∑ϕi = (x0− xn)
2 + (y0− yn)

2− (t0−
tn)2 +∑

n
i=1((xi− xi−1)

2 +(yi− yi−1)
2− (ti− ti−1)

2).

Figure 3: Camera view chaining generated by Algorithm 1 and
2, respectively. Three axes represent the normalized longitude,
normalized latitude and normalized timestamp, respectively.

Chaining Optimization. In the practical application, we find
the detected events usually occurring within a certain area and
chaining camera views for all the events takes too much time
and is also unfriendly. To resolve this issue, we cluster event
points locally. Therefore, we can generate the subproblem
sets by breaking the problem above into two parts: (1) Inside
each local part for a single cluster, we use either Algorithm 1
or 2 to perform the camera scheduling. (2) For inter-cluster
camera scheduling, we simply consider each cluster as a single
point with the center of the cluster as the coordinate and then
apply K-means clustering to the event points based on their
3D coordinates. Therefore, all the event points can be divided
into K groups. The parameter K can be derived by observation
of the historical records. Here, we set 4 as the value of K.

Camera Shot Design. We borrow the idea in filmmaking in
which the expression of emotions and ideas can be enhanced
by employing appropriate camera shot designs to further de-
sign the camera shot along the camera route. To be specific,
we employ different camera shots to depict different events
by using the following parameters in animations, including
focal point ccenter, shot duration cd , camera distance ch, pitch
cp, and camera orientation co to control the camera motion.

We report how each camera shot could be mapped into a
marathon [44]: (1) Normal shot. It tracks the objects from
the side. We use it to track the participants. (2) Panorama
shot. It slowly moves the camera over a landscape with a wide-
open space. We use it to switch the view from the surroundings
to the starting point of the marathon race. (3) Following shot.
The camera follows the subject being filmed around. We apply
it to track runners from the rear. (4) Dolly shot. It moves the
camera toward or away from a subject while filming. We use
it to observe anomalies by sliding and panning the camera,
and (5) Split-screen. It divides the screen and shows several
images simultaneously to present a seamless view of reality.
We use it to watch two or more anomalies simultaneously.
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Figure 4: Camera motion for different shot types.

We apply several types of camera motions to simulate each
shot type. As the most basic filmmaking technique, we use
normal shot to track the runners. As shown in Figure 4, we
leverage a third-person view as the camera direction in the
three-point perspective and the center of the runner clusters as
the focal point ccenter of the camera. The camera orientation
co of the normal shot is defined by the FrenetSerret frame [16]
as co = 1√

3
d(T +N−T ∗N), where the constant d denotes

the distance between the camera and the focal point, while T
and N denote the tangent unit vector and normal unit vector
of the trajectory, respectively. To gain a full perspective of
the surroundings, we apply panorama shot at the beginning
to achieve a transition from the global view to the beginning
of the event. We set the camera distance cd ensuring that it
is high enough to cover the areas for a panoramic view. In
following shot, the camera tracks the subject from the rear
(Figure 4). When anomalous events occur, we shift to dolly
shot by pushing or pulling away the camera (i.e., changing the
parameters of camera distance cd and pitch cp) to better ob-
serve and understand the emergencies. We adopt split-screen
for displaying multiple camera views. When facing simul-
taneous events, the system divides the screen and allocates
different sessions for monitoring individual anomaly.

FRONT-END VISUALIZATION
We develop four visualizations (Figure 5) that allow the
marathon data to be easily inspected: a marathon overview
presenting event progress, an anomaly detection view illus-
trating the real-time and stage anomaly detection, a camera
shot view facilitating the anomaly exploration and coordinated
intervention, and an HRV inspection view showing medical
metrics of the anomalous runners.

Figure 5: The full MaraVis system contains four coordinated
views: (1) a marathon overview, (2) an anomaly detection
view, (3) a camera shot view, and (4) an HRV inspection view.

Marathon Overview
An important and innovative enhancement to Penrose is the
marathon overview which provides a representation of runner

distribution over the racecourse (R.1) (Figure 6). Each ring
represents a geographical distance (e.g., 4km, 8km, and 12km).
The curve along the ring indicates the number of runners that
fall in the corresponding geographical scale (Figure 6(1)). The
counterclockwise direction indicates the time segments (20
minutes per axis). The box-plot along each time axis shows
the distance distribution of runners (Figure 6(2)). Red points
along each ring represent the time for achieving a new distance
milestone. For example, the first runner takes 88.08 minutes
to finish 20km (Figure 6(3)). The rolling information billboard
updates currently the fastest runner (Figure 6(4)).

Figure 6: Visual encodings in the marathon overview design.

Anomaly Detection View
To support both real-time and stage anomaly detection, we
integrate three components into the anomaly detection view,
namely, an area with box plots, a scatter contour plot and an
abnormal ID list (Figure 7(1-3)) (R.2). The real-time area with
box plots shows the results of the real-time anomaly detection.
To be specific, the box plot shows the distribution of sum of
normalized attributes (i.e., speed, PPI, pace, distance) and the
width of the area at the corresponding timestamp indicates the
range of sum of normalized attributes (Figure 7(A)). The white
points represent the detected anomalous runners in real-time.
The scatter contour plot shows the spatial distribution of all
the runners in the corresponding time window using t-SNE
based on their attributes, which aggregates the multivariate
runner attributes into subsets exhibiting a certain similarity.
Each point in this view represents a runner whose anomaly
degree is encoded by its size, which is calculated by previously
mentioned LOF algorithm. The detected anomalies are en-
coded as red nodes (Figure 7(D)). The values of their attributes
are also rendered as red lines in the area with box plots (Fig-
ure 7(B)), which enables to track the attribute changes in the
corresponding time window. To enhance the anomaly analysis,
we render a contour map to reveal areas with different den-
sities. Intuitively, a normal point tends to lie in high-density
areas where many other points have similar behaviors. We
use the kernel density estimation (KDE) to define the density
at runner’s position. From this view, we can also provide
another perspective for anomaly diagnosis according to the
inconsistent measurements of similar runners. For example,
some anomalous nodes (high LOF score) may be grouped in
the low-density contour, which could represent a rare medical
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Figure 7: Anomaly detection view and cases of detecting inconsistent attribute values and abnormal AF beats in HR signals.

encounter that deserves attention. Along each vertical axis
(Figure 7(C)), we plot the distribution of runner’s attributes
from two consecutive time windows, which supports a detailed
exploration of the changes before and after the predefined time
window. When users hover on a specific node, links would
connect to the corresponding value of attributes in the vertical
axis. The detected anomalous runners’ ids would be listed,
with a tooltip encoding its occurrence number (Figure 7(E)).

Camera Shot View
We design a camera shot view that facilitates swift response
through view shift by using an optimal chaining route and shot
designs (R.3-5) (Figure 5(3)). This view visualizes event in-
formation, including the event object (normal runners encoded
as green dots and anomalies as red dots), occurrence time and
location. Particularly, it first applies a panorama shot at the
beginning of the tracking to present the event overview, and
then switches to a normal shot to capture the runners. When
the event begins, the camera uses a following shot. As shown
in Figure 8, the runners’ clustering result is obtained in real-
time, which is visualized by a yellow circle, with the center
always at the focal point of the camera. When detecting an
anomaly, a dolly shot is applied to shot the situation around the
event. Meanwhile, the nearest aid station to the event would
be automatically recommended. When there is a set of events,
MaraVis computes an optimal route that connects each of them
by using the proposed chaining algorithm.

Figure 8: Camera move chaining and shot designs.

Handling Simultaneous Events. During the race, we ob-
served around 2-4 events occurring simultaneously at different

points of time. Currently, only one camera is employed in Pen-
rose and in our system to capture anomalies and the previous
camera shot algorithms are under this premise. For example,
Algorithm 2 captures anomalous events by minimizing the
cumulative gap between the spatiotemporal distance of events
(Figure 3). If multiple anomalies, say, A and B occur exactly at
the same time in the same place, the algorithm can shoot A and
B simultaneously; however, if A and B occur simultaneously
but in different places that are far apart, the algorithm deter-
mines its order based on their spatial and temporal distances,
e.g., first shooting A and then B, and this may lead to a slight
delay when shooting B. To handle simultaneous events, we
adopt split-screen by applying multiple cameras for displaying
multiple views. That is, when facing simultaneous events, the
system divides the screen and allocates different sessions for
monitoring individual anomaly, as shown in Figure 5(3).

HRV Inspection View
To help professional medical groups make accurate diagnos-
tic decisions and preparedness, we include several additional
views that link to runner selection made in the anomaly de-
tection view (R.2). After a selection is made, HRV metrics
extracted from the runner’s PPI data are displayed. We adopt
conventional visualization commonly used in medical reports
to display these metrics like heart rate profile, PPI timeline,
PPI Poincare chart, PPI distribution chart, HR (diff) distribu-
tion and PPI frequency spectrum (Figure 5(4)).

EVALUATION
In the dataset, we identify 216 incidents of four main types of
events: inconsistent attribute values (e.g., relatively high or low
heart rates) (19 incidents), abnormal or missing trajectories
(15 incidents), abnormal AF beats in HR signals (30 incidents),
and heart rate value is 0 (e.g., due to loosened bracelet) (152
incidents). However, in marathon scenarios, no standardized
dataset nor ground truth labels exist to evaluate the accuracy
of algorithms for detecting anomalies [4, 15], and we do not
have the actual anomaly labels. Moreover, a real-time system
emphasizes more on its efficiency in supporting fast online and
offline decision-making. Hence, in this work, we introduce
how MaraVis facilitates detecting inconsistent attribute values
and abnormal AF beats in HR signals, and then focus on the
evaluation of the usefulness and efficacy of MaraVis instead
of the accuracy of anomaly detection methods.
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As shown in Figure 7, in the first 2-minute period, MaraVis
generates a list of anomalies by combining the results from
real-time anomaly detection (2 incidents) and stage anomaly
detection (5 incidents). When we click on one of the abnormal
runner id, namely, 10056, and identify that in the 2-minute
period, 10056’s sum of the normalized attributes (i.e., sign
index) is initially high and then gradually decreased, unlike
others’ performance. In addition, through the HRV inspection
view, it can be witnessed that 10056’s heart rate drops to 0
at a later stage, which is a potential anomaly. Similarly, the
system detects an inconsistence occurs to 10028’s sign index
and heart rate data and determines that 10028 is a potential
anomaly. Another case shows the sign index of 10044 fluctu-
ates significantly in the middle stage and AF appears in the
heart rate signal, which requires an offline inspection.

Experiment Design
We adopt a four-layer taxonomy [45] to evaluate MaraVis.
Specifically, we conduct a within-subjects study to system-
atically assess the informativeness, the effectiveness in facil-
itating decision-making, usability, visual design, as well as
camera view chaining algorithms.

Participants. We recruit 18 volunteers (9 females, 9 males,
age: 28± 3.03) from the local marathon organization. In
particular, we choose the participants with running and wear-
ing sensible smartwatches experiences, for which they could
provide us more comprehensible insights.

Figure 9: The primitive version of MaraVis consists of (1)
a marathon overview, (2) an anomaly detection view, (3) a
camera shot view and (4) a list of anomalous runners.

Experiment Procedure. We compare MaraVis with two alter-
native systems. One is Penrose developed by our collaboration
experts (the baseline). The other one is a primitive version of
MaraVis. The primitive system divides the detected anomalies
into tachycardia and bradycardia by using a scatter plot visu-
alization (Figure 9(2)). The differences between the primitive
and full version lie in: (1) the full version provides more data
attributes to support both real-time and stage anomaly detec-
tion and the primitive version only detects anomalies based
on PPI in real-time; (2) the full version makes use of several
visual cues and hints to illustrate the results from both real-
time and stage anomaly detection; (3) the simplified version
uses statistical charts to present the marathon overview (Fig-
ure 9(1)), while the full version leverages a circular box-plot
design (Figure 5(1)) to encode relevant marathon data. To
minimize the ordering and learning effect, we counterbalance
the three systems in comparison with the three scenarios.

Informativeness. The information is (Q1) easy to access,
(Q2) rich and (Q3) sufficient to determine an anomaly.
Decision Making. (Q4) The information provided for
anomaly detection is trustworthy. (Q5) The system was
helpful to observe an anomaly and (Q6) helps make in-
formed decisions according to the visualization.
Visual Design. (Q7) The anomaly detection design is intu-
itive and (Q8) helps understand the reasons behind anoma-
lies. (Q9) The marathon overview design is intuitive and
(Q10) helps me access the overview of the marathon event.
Usability. The system was (Q11) easy to learn, (Q12) con-
venient to use, and (Q13) recommended to other scenarios.
View Chaining. (Q14) The event capture is relatively con-
flicting. (Q15) The view transitions are smooth and coher-
ent. (Q16) The animation follows a reasonable route.

Table 1: Our questionnaire consists of five aspects: infor-
mativeness (Q1-3), decision making (Q4-6), visual design
(Q7-10), usability (Q11-13), and view chaining (Q14-16).

We conduct the experiment in four sessions. In the first session,
participants are briefed about the background, purpose and
procedure of the experiment. Each following session lasts
around 10 minutes and one of the three systems is presented
and tested. Each participant is required to conduct two tasks
with the provided system. The first task is to observe and track
the potential anomalies. The second task is to evaluate the
camera move chaining algorithms. Participants are also asked
to think aloud their ideas when performing all the tasks. After
finishing all the tasks with a particular system, participants are
required to complete a questionnaire with 7-point Likert scale
questions derived from the existing literature [33] (Table 1).

We propose the following hypotheses: H1. The primitive and
full versions of MaraVis perform better than the baseline in
terms of informativeness. Specifically, MaraVis systems enjoy
their advantages on information accessibility (H1a), richness
(H1b), and sufficiency (H1c) compared with the baseline. H2.
The primitive and full versions of MaraVis are better than the
baseline in facilitating decision-making. In particular, MaraVis
systems provide more confidence (H2a), assistance (H2b), and
intervention (H2c) compared with the baseline. H3. The full
version is more informative than the primitive version. Specifi-
cally, the information accessibility (H3a), richness (H3b), and
sufficiency (H3c) of the full version are better than that of
the primitive version. H4. The full version performs better
than the primitive version in facilitating decision-making in
terms of confidence (H4a), assistance (H4b), and intervention
(H4c). H5. The primitive version is considered more intu-
itive (H5a), easier to comprehend (H5b), learn (H5c), and use
(H5d), and thus is better recommended (H5e) compared with
the full version. We also propose two hypotheses to compare
different camera chaining methods. Specifically, we compare
Algorithm 1 and 2 with a baseline method that shots events
one after another: H6. Both Algorithm 1 and 2 are better
than the baseline in terms of less conflicting (H6a), smoother
and more coherent (H6b), and follow a more reasonable route
(H6c)). H7. Algorithm 2 is preferred over 1, i.e., Algorithm 1
is considered more conflicting (H7a), less smooth and coher-
ent (H7b), as well as follows a less reasonable route (H7c).
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Mean SD B VS. P B VS. F P VS. F
B P F B P F p p p d f F Sig. η2

Informativeness
accessibility 3.22 6.06 6.11 1.77 .87 .96 0.00 0.00 1.00 2.00 28.93 0.00 .63
richness 2.83 5.50 6.50 1.38 .86 .71 0.00 0.00 .001 2.00 65.96 0.00 .80
sufficiency 2.94 5.67 6.28 1.66 1.08 .89 0.00 0.00 .26 2.00 37.57 0.00 .69

Decision Making
confidence 3.28 6.11 6.22 1.67 1.02 .94 0.00 0.00 1.00 2.00 33.81 0.00 .67
assistance 3.39 6.00 6.17 2.33 .84 1.04 .002 .001 1.00 2.00 17.69 0.00 .51
intervention 4.50 6.11 6.28 1.79 .83 .67 .01 .004 .81 2.00 11.97 0.00 .41

Visual Design

intuitiveness1 / 5.61 5.44 / 1.04 1.15 / / .64 1.00 .23 .64 .01
comprehension1 / 5.78 5.78 / 1.31 1.52 / / 1.00 1.00 0.00 1.00 0.00
intuitiveness2 / 4.94 5.72 / .99 1.07 / / .009 1.00 8.77 .009 .34
comprehension2 / 5.50 5.89 / 1.09 1.13 / / .26 1.00 1.35 .26 .07

System Usability
easy to learn 5.50 6.00 5.33 1.34 1.28 1.24 .68 1.00 .19 2.00 1.59 .22 .09
easy to use 5.39 5.83 5.89 1.58 1.04 1.08 .97 .90 1.00 2.00 .92 .41 .05
recommendable 4.28 5.89 6.17 1.60 .96 1.04 .007 .002 .41 2.00 14.08 0.00 .45

Table 2: Repeated measures ANOVA of baseline (B), primitive (P), and full (F) version on informativeness, decision-making, visual
designs, and usability (1 and 2 indicate the result of the anomaly detection design and marathon overview design, respectively).

Results and Analysis
We report participants’ quantitative ratings and feedback on
informativeness, decision-making, visual design, and usability,
as well as view chaining. We run repeated measures ANOVA
on each questionnaire item, followed by the Bonferroni post-
hoc test on measures with statistically significant differences.

Informativeness. The primitive and full versions of MaraVis
receive significantly higher scores in all metrics of informa-
tiveness than the baseline (Table 2). Assessing information is
significantly easier in the full and primitive versions than the
baseline (H1a supported). No significance has been found
between the full and primitive version in the Bonferroni post-
hoc test (p = 1.0, H3a rejected). The information provided
by the full and primitive versions is significantly richer than
the baseline (H1b supported). We also observe a significant
difference between the full and primitive version with p < .01,
H3b supported. “The full version leverages more data which
can screen out potential anomalies, and this is in line with the
principle of ensuring the participants’ safety to the greatest ex-
tent” (P12, male, age: 31). The information offered by the full
and primitive versions is shown to be sufficient in determining
an anomaly, compared with the baseline (H1c supported).
No significant difference has been found between the full and
primitive version (p = .26, H3c rejected).

Decision-Making. Participants report significantly higher
confidence in anomaly detection using the two versions com-
pared with the baseline (Table 2, H2a supported). No sig-
nificant difference is identified between the full and primi-
tive version in the Bonferroni post-hoc test (p = 1.0, H4a
rejected). Participants also report that the full and primitive
versions provide significantly more assistance than the base-
line (H2b supported). No significant difference has been
found between the full and primitive version in the Bonfer-
roni post-hoc test (p = 1.0, H4b rejected). When asking the
participants whether MaraVis helps make informed decisions,
results show that both versions are significantly better than the
baseline (H2c supported). However, no significant difference
exists between the two versions (p = .81, H4c rejected).

In summary, results on informativeness and decision-making
demonstrate that MaraVis provides more accessible, rich, and
sufficient information to users. “The baseline only shows
anomalies without any details” (P12, male, age: 31). Partic-
ularly, the full version enhances information richness while

still maintaining good accessibility. However, the two systems
do not differ significantly in facilitating decision-making. Par-
ticipants comment that they lack ground-truth data to confirm
the systems’ performance, although they acknowledge that the
full version plays a better role in anomaly detection as it is
important “not to miss any suspicious case”. “It is better to
know whether the detected anomalies are really abnormal so
I can know anomaly error rate” (P10, female, age: 29).

Intuitiveness and Comprehension. Different from our hy-
pothesis, the anomaly detection design in the primitive version
is not more intuitive or comprehensible than that in the full
version (Table 2). However, the marathon overview design
in the full version is more intuitive than that in the primitive
version, although there is no significant difference regarding
the comprehension of the design (H5a and H5b rejected).
Participants report that they can understand the idea behind
the anomaly detection design in the full version. “Monitoring
real-time metrics and then comparing with other runners ac-
cord with the idea of anomaly detection” (P6, male, age: 26).
“The marathon overview centralizes the event essence into one
design so that I don’t need to locate different information on
the screen” (P2, male, age: 28).

Learn, Use and Recommendable. No significant difference
exists in terms of easy to learn and use among the three systems
(Table 2). The Bonferroni post-hoc test also shows that there is
no significant difference between the full and primitive version
in terms of easy to learn and use (p = .19 and 1.00) (H5c and
H5d rejected). “With some introduction to each view, it is easy
for me to develop a path through the system for observation”
(P14, female, age: 25). However, participants are more willing
to recommend the two versions than the baseline to other
scenarios. “MaraVis is very useful because it provides a novel
and highly automatic way to uncover potential anomalies”
(P6, male, age: 26). “MaraVis significantly expands from
a single-page dashboard to a multiple-feature system” (P15,
female, age: 26). No significant difference exists between the
primitive and full versions (p = .41) (H5e rejected).

View Chaining. Algorithm 2 is regarded as the best in terms
of view chaining (Figure 10). Participants report that there
are fewer conflicts of Algorithm 1 and 2 compared with the
baseline (H6a supported). We do not observe a significant
difference between Algorithm 1 and 2 in a Bonferroni post-
hoc test (p = 1.00, H7a rejected). However, a significant
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difference regarding smooth and coherent exists between Al-
gorithm 1 and 2, while the baseline is in the middle (H6b par-
tially supported). We also observe a significant difference
between Algorithm 1 and 2 with p < .01, H7b supported.
“The chaining of Algorithm 1 moves fast and brings dizziness”
(P13, female, age: 26). A significant difference exists regard-
ing following a reasonable route between Algorithm 1 and 2,
while the baseline is in the middle (H6c partially supported).
There is also a significant difference between Algorithm 1
and 2 with p < .01, H7c supported. “I feel the chaining of
Algorithm 2 is on schedule” (P8, female, age: 30).

Figure 10: Means and standard errors of Baseline, Algorithm
1, and Algorithm 2 on conflicting, smooth and coherent, as
well as following a reasonable route of camera view chaining
on a 7-point Likert scale (*: p < .01, **: .01 < p < .05).

Quantitative Evaluation of View Chaining. To quantita-
tively measure the differences between the three chaining
methods, we study the time efficiency of baseline as well as
algorithm 1 and 2 with an experiment shown in Figure 3. For
the same series of 14 potential anomalies, we calculate both
the time and distance interval between two consecutive events
in the shooting order determined by each method. We obtain
the distance deviation per unit time as 33.3, 39.6, and 31.5
meters of baseline, algorithms 1 and 2, respectively, indicating
that algorithm 2 presents the smoothest transition, which is
consistent with what we find in the user study.

DISCUSSION AND LIMITATION
We conduct a semi-structured interview with E.1-5 to collect
feedback on generalizability, scalability, and learnability.

Generalizability. When discussing with the experts about
which component(s) of MaraVis can be directly deployed
for other marathons and which one(s) need customization to
further explore the potential of our system, three insights are
identified: (1) Visualization. E.3 mentions that design like
2.5D map, scatter plot, box plot employed in MaraVis are quite
generic. Other marathon teams should be able to understand
them without much training. (2) Data. E.3 suggests that
MaraVis has covered most of the common data coming in
and out of a marathon control center. Although we showcase
the system by using one local marathon data, we can easily
incorporate data from other events by simply reformatting and
reconfiguration. E.4 adds that if we integrate new sensing data
according to the actual sensor devices deployed at each event
in a plug-and-play fashion, the system would be very adaptable.
(3) Algorithms. E.1 finds it helpful that MaraVis has well-
defined APIs for each module. With this setup, we can replace
backend algorithms such as the one for anomaly detection with
other methods whenever necessary. Furthermore, as indicated

by the experts in the interview, our system can be extended
to other healthcare scenarios such as city-scale ambulance
dispatching and tracking upon emergency calls.

Scalability. Since we only test our system with real-time data
from 800 participants, the experts point out we need to handle
scalability issues with visualization when dealing with a larger
data stream. In response to them, we propose one possible
measure: data sampling. That is, the data reporting time of
smartwatches is not uniform, and it is feasible that we only
visualize the data available in each timestamp.

Learnability. Our experts recommend a potential means to
lower the learning cost of MaraVis by suggesting that we
could first familiarize new users with the preliminary version
(Mean = 6.00, SD = 1.28) of the system, which incorporates
similar data views of the full system (Mean = 5.33, SD =
1.24) while imitating the conventional practices of our target
users. In this way, users would not be overwhelmed and
intimidated by working with something unfamiliar. Instead,
they have time and space to gain new knowledge incrementally,
build trust, and ultimately embrace innovation. Meanwhile,
we can take the chance to test the initial designs for later use.

Limitation. First, we do not consider the individual differ-
ence in anomaly detection. In the user study, some participants
report that the maximum heart rate a person can achieve varies
from individual to individual. We may include physical ex-
amination data of runners to personalize their information for
more accurate analysis. Second, there is no ground truth to
verify the error rate of anomaly report generated by our system,
since we are currently confined to real-time data streamed by
smartwatches and lack feedback regarding the actual interven-
tion of anomaly offline. Third, we focus on camera chaining
and shot design that can be well captured in simulation in
the scope of this work, so we have not applied and tested in
real videos. Besides, the proposed camera move chaining
and shot designs are based on an ideal situation, e.g., camera
views could be easily attained and no other obstacles exist
when shooting. Given the complexity of actual environments
like racecourse conditions that may lower system usability,
one possible solution is to create and chain camera moves for
Quadrotor videography [47] for offline anomaly intervention.

CONCLUSION AND FUTURE WORK
In this paper, we introduce a real-time marathon visualization
system MaraVis that supports better representation and inter-
vention of medical encounters. It identifies potential anomalies
for organizers to quickly follow up with critical medical in-
cidents and calculates an optimal camera route to catch the
events in time, as well as make a smooth view transition. In
the future, we will deploy our system in a real-world marathon
for field studies. Also, we will extend the camera shot design
to a formal and comprehensive design study.
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